Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEAT DIFFUSION By

The three–dimensional incompressible viscous Boussinesq equations, under the assumption of hydrostatic balance, govern the large scale dynamics of atmospheric and oceanic motion, and are commonly called the primitive equations. To overcome the turbulence mixing a partial vertical diffusion is usually added to the temperature advection (or density stratification) equation. In this paper we prove...

متن کامل

The 3d Primitive Equations in the Absence of Viscosity: Boundary Conditions and Well-posedness in the Linearized Case

In this article we consider the 3D Primitive Equations (PEs) of the ocean, without viscosity and linearized around a stratified flow. As recalled in the Introduction, the PEs without viscosity ought to be supplemented with boundary conditions of a totally new type which must be nonlocal. In this article a set of boundary conditions is proposed for which we show that the linearized PEs are well-...

متن کامل

Global well-posedness for the primitive equations with less regular initial data

Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du système des équations primitives pour des données moins régulières. On interpole les résultats d’existence globale à données Ḣ 1 2 petites fournis par le théorème de FujitaKato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est suffisamment petit, et pour des données plus régulière...

متن کامل

Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...

متن کامل

Global Well-Posedness for Schrödinger Equations with Derivative

We prove that the 1D Schrödinger equation with derivative in the nonlinear term is globally well-posed in H s , for s > 2/3 for small L 2 data. The result follows from an application of the " I-method ". This method allows to define a modification of the energy norm H 1 that is " almost conserved " and can be used to perform an iteration argument. We also remark that the same argument can be us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2020

ISSN: 0167-2789

DOI: 10.1016/j.physd.2020.132606